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Imagine the following data service,
as a simple familiar example.
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Creating a new market for used digital communication devices

various factors (variables) that determine the price of a used device

in-store or online retail prices and specifications of new products
transaction information in online auctions of second-hand products,
including damage, network restrictions, and so on
others

a set of “processed and summarized” variables (data) of a used device
specified for each user

Each instance of data consists of several variables.
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1. Introduction: Research Question

Data and variables are easily replicable. ⇒ not scarce ⇒ difficult to
put a price on variables and data

How can we price the data and its constituent variables?
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1. Introduction: Major Features

a new model from the perspective of cooperative games

1 Muto and Nakayama (1992): resale of information (without
production)

2 Watanabe and Muto (2008): disadvantage arising due to not owning
information (under patent protection)

The prices of variables are exogenously set at the initial round, and they
are updated for the next round based on the outcomes of trades made in
the current round.

Conjecture: backward induction ⇒ prices never move in any rounds
that proceed after the initial round.

no budget constraints vs. under budget constraints
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1. Introduction: Main Results

The prices of data and the constituent variables fluctuated over
rounds. Resale occasionally happens.

The prices of data determined by the initial owners under budget
constraints remained relatively stable without a drastic increase
compared with the prices of those data determined under no budget
constraints, although the budget constraints were so loose that it
would not be actually a constraint at all for rational traders. the
budget constraints.

The efficiency rates in transactions made under budget constraints
were not lower than those rates in transactions made under no budget
constraints.
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2. Model

2 instances of data, each consisting of 3 items of variables, traded in
12 rounds (r = 0, 1, 2, . . . , 12) by 4 traders.

At each round, the prices of the variables are given to traders and
updated for the next round immediately at the end of the round,
based on the outcomes of trades.

pi (r): price of variable i in round r
replicability ⇒ Traders purchase one unit of the variable.
The production cost of data is the sum of the expenditure

for the constituent variables.
tj(r): price of data j in round r
replicability ⇒ Users of data j purchase one unit of the data.
(under budget constraints) Every agent was faced with a temporary
budget constraint that amounted to 250 in each round. Even if there
was a surplus budget, it could not t be carried over to subsequent
rounds.
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the gross profits for an individual user and those for a non-user of the
data satisfy the following relationship:

Wj(1) ≥Wj(2) ≥ · · · ≥Wj(n) > Lj(0)

≥ Lj(1) ≥ Lj(2) ≥ · · · ≥ Lj(n − 1). (1)

When there are s owners of data j , a user obtains Wj(s) while a
non-user obtains Lj(s). (disadvantages for non-users)

The data can be replicated and resold freely.

each owner of the data proposes the price and the number of instances
of the data, and
traders who do not own the data may purchase the data at the
proposed price.

ti (r) is the price at which the initial owner sells. The resale process
stops for all data ⇒ transactions proceed to the next round.

Any data expire for the use within each round in order to avoid
dynamic competition among instances of data at the markets.
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# of users of data j (j = 1, 2) ⇒ demand for variable i

qi (r): threshold for variable i in round r . This threshold value is used
for updating its price pi (r) that is set at the market in the next round.

The initial values of qi (0) and pi (0) are exogenously given.

Demand for variable i in round t exceeds qi (t) ⇒ the price in round
t + 1 is updated to pi (t + 1) = pi (t) + ai . The threshold in round
t + 1 is also updated to qi (t + 1) = qi (t) + bi .

Demand falls below qi (t). ⇒ pi (t + 1) = max(0, pi (t)− ai ) and
qi (t + 1) = max(0, qi (t)− bi ).

· · · ai and bi are positive constants exogenously given.
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3. Experimental Design: Gross Profits

Data 1 and Data 2 are traded.

The gross profits are specified as follows.

Data 1: W1(1) = 200, W1(2) = 150, W1(3) = 70, W1(4) = 50,
L1(0) = 40, L1(1) = 30, L1(2) = 20, L1(3) = 10.

Data 2: W2(1) = 200, W2(2) = 120, W2(3) = 70, W2(4) = 50,
L2(0) = 40, L2(1) = 30, L2(2) = 20, L2(3) = 10.

complete information environment: the values of gross profits are
shown to the subjects.

incomplete information environment: subjects are informed of the
orders of those gross profits. In practice, traders have to estimate
those values.
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3. Experimental Design: Demands for Variables

# of users of data j (j = 1, 2) ⇒ demand for variable i

First, find the largest integer e such that 2 ≤ e ≤ 3 and

Wj(e)>Wj(4) + (4− e)(Wj(4)− Lj(e)).

When e = 3, Wj(3) = 70 and Wj(4) + (4− 3)(Wj(4)− Lj(3)) = 90.
Namely, when there are 3 data holders, each one obtains 70 but one
can obtain 90 by reselling the data, but the amount is at most 90.

When e = 2, W1(2) = 150 and W2(2) = 120, but
Wj(4) + (4− 2)(Wj(4)− Lj(2)) = 110 for j = 1, 2. Namely, when
there are 2 data holders, everyone has no incentive to resell the data.

The solution of the above problem is thus e = 2.
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Second, consider a situation in which there are 2 data holders.

If one of the data holders resells to a trader, then he can receive
Wj(3)− Lj(2) = 50 for Data j = 1, 2 from the trader.

In the case of e = 3, however, another resale is expected to occur,
as shown previously. Thus, the data holders can eventually obtain
at most Wj(3)− Lj(2) + Wj(4) + (Wj(4)− Lj(3)) = 140 for Data
j = 1, 2.

In the case of Data 1, any resale should not occur when e = 2,
because W1(2) = 150.

Even in the case of Data 2, any resale should not occur when e = 2;
W2(2) = 120. When a resale to a non-holder occurred, another resale
should occur as shown above, and thus the first reseller would
obtained W2(3)− L2(2) + W2(4) = 100. Even if the first resale was
made to 2 hon-holders, he would obtain
2(W2(4)− L2(2)) + W2(4) = 110.

Resale does not occur when there are 2 data holders.
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Finally, compare the case of e = 2 and e = 1.

If the initial holder of Data 1 does not sell the data, then he obtains
W1(1) = 200, but he can obtain
W1(2) + (2− 1)(W1(2)− L1(1)) = 270
through monetary transfer by selling the data to a trader.

Similarly, consider the case of Data 2. W2(1) = 200, but he can
obtain W2(2) + (2− 1)(W2(2)− L2(1)) = 210
through monetary transfer by selling the data to a trader.

According to the backward induction, 2 data holders should not resell the
data to any traders.
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3. Experimental Design: Social Welfare

Compute the maximal amounts of producer surplus. (The payments are
cancelled between payers and recipients, when summing up their profits.)

Data 1: the total sum of profits (producer surplus) is maximized at
e = 2; 2W1(2) + 2L1(2) = 2 ∗ 150 + 2 ∗ 20 = 340.

Data 2: it is maximized at e = 1;
W2(1) + 3L2(3) = 200 + 3 ∗ 30 = 290.
(2W2(2) + 2L2(2) = 2 ∗ 120 + 2 ∗ 20 = 280)

Therefore, in terms of “social welfare” of traders, the initial holder of
Data 2 should not sell Data 2 to any users.
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3. Experimental Design: Theoretical Predictions

payoff maximization: The initial holders of Data 1 and Data 2 should
sell their data to a trader, respectively. Resale should not occur.

social welfare: It is maximized when there are 2 data holders in the
case of Data 1, while it is maximized when the initial holder of Data 2
does not sell the data to any traders.
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3. Experimental Design: Session Details

We conducted 4 experimental sessions, each consisting of 12 rounds.

The initial prices of variables x , y and z : p1(0) = 10, p2(0) = 20,
p3(0) = 30.

q1(0) = q2(0) = q3(0) = 2 for Data 1, and q1(0) = q2(0) = 2 or
q1(0) = q3(0) = 2 for Data 2 (by the previous backward induction)

The constants for updating those prices and thresholds are
a1 = a2 = 10 and b1 = b2 = 10, respectively.
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In every session, 16 subjects divided into 4 groups of 4 subjects at the
beginning of the session.

The initial holder of each data is determined randomly and does not
change in all rounds.
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Data 1 ⇒ Data 2: The transactions of Data 2 proceed in a manner
similar to those for Data 1.

After the transactions for Data 1 and Data 2, the price of the
variables are updated.

Then, the transactions for the next round start in a similar manner.

19 / 1



Resale can be made at most twice.

The payoff for each agent is

[gross profit obtained from Data 1
+ (re)selling price(s) of Data 1 − buying price of Data 1]

+ [gross profit obtained from Data 2
+ total (re)selling price(s) of Data 2 − buying price of Data 2],

where the buying price of Data j (j = 1, 2) is the sum of prices of Data j ’s
constituent variables for the initial owner of Data j .
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4. Result: Prices of Variables

Result 1

The average prices of variables i = x , y , z were not far from the initial
price pi (0). In the complete information environment, the variances were
not significantly larger in all cases except variable y in session comp xy, as
compared with those prices under no budget constraints.

session variable x variable y variable z
comp xy 8.889 (9.428) 13.472 ( 9.952) 23.472 (11.279)
comp xz 9.500 (1.126) 22.167 ( 7.831) 25.000 (12.003)

incomp xy 13.646 (8.719) 21.458 (12.813) 29.271 (11.262)
incomp xz 12.708 (7.852) 22.292 ( 6.270) 29.583 (13.831)

TABLE I: Average prices of the variables under budget constraints.
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Fig. 3: Prices of variables traded under no budget constraints.
Note: The graphs at the upper-left (right) corner represents the time series
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Fig. 4: Prices of variables traded under budget constraints.
Note: The graphs at the upper-left (right) corner represents the time series
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4. Result: Prices of Data

Result 2

The prices of data determined by the initial owners under budget
constraints remained relatively stable without a drastic increase compared
with those determined under no budget constraints.

session Data 1 Data 2 p-value
comp xy 95.758 (38.793) 93.111 (51.899) 0.395
comp xz 92.889 (39.910) 83.618 (21.500) 0.694

incomp xy 101.961 (37.197) 92.978 (40.622) 0.089
incomp xz 78.450 (26.330) 79.568 (34.506) 0.574

TABLE II: Average prices of data determined by the initial owners
under budget constraints.

Note: The p-values for the Brunner-Munzel test conducted to compare the

Note: The graphs at the upper-left (right) corner represents the time series
), and the graphs at the lower-left corner stand for

session Data 1 Data 2
comp xy 0.473 0.772
comp xz p <0.001 p <0.001

incomp xy 0.031 0.613
incomp xz 0.044 p <0.001

TABLE III: P-values for the Brunner-Munzel tests: budget con-
straints vs. no budget constraints.
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Fig. 5: Prices of data determined by the initial owners under no
budget constraints.

Note: The graphs on the left-hand (right-hand) side represent the time series

Fig. 6: Prices of data determined by the initial owners under budget
constraints.

Note: The graphs on the left-hand (right-hand) side represent the time series
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4. Result: Social Welfare 1

Result 3

For Data 2, the efficiency rates observed in the incomplete information
environment differed significantly from those observed in the complete
information environment, although there was no such difference for Data 1.
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Fig. 7: Average efficiency rates: under no budget constraints.
Note: The graph on the left-hand (right) side stands for the average efficiency

Fig. 8: Average efficiency rates: under budget constraints.
Note: The graph on the left-hand (right) side stands for the average efficiency
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sessions pooled complete info Data 1 rounds

comp xy and incomp xy 0.167 p<0.001
0.191 p<0.001 0.062

comp xz and incomp xz 0.345 0.006
0.345 0.006 0.437

TABLE IV: The p-values for a two-way ANOVA.

Data 1 Data 2 p-value # of samples
comp xy 1.187 1.393 p<0.001 72

incomp xy 1.213 1.299 0.026 96
p-value 0.912 0.022

comp xz 1.246 1.422 0.001 60
incomp xz 1.296 1.303 0.862 48

p-value 0.280 0.012

TABLE V: Average transformed efficiency rates and p-values for the
Brunner-Munzel test.

transformed efficiency rate = arcsin(sqrt(efficiency rate))

In transactions made under no budget constraints, the transformed
efficiency rates were 1.058 and 1.276 for Data 1 and Data 2, respectively.
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4. Result: Social Welfare 2

Result 4

The efficiency rates in transactions made under budget constraints were
not lower than those rates in transactions made under no budget
constraints.

xz in transactions made under budget constraints.

session Data 1 Data 2
comp xy 0.847 0.701
comp xz 0.763 0.864

incomp xy 0.668 0.145
incomp xz 0.042 0.014

TABLE VI: P-values for the Brunner-Munzel test.

Note: The Brunner-Munzel test was conducted to compare the efficiency rates

Conducted to compare the efficiency rates of each type of data between
results under no budget constraints and under budget constraints.
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4. Result: What Factors Made Efficiency Rates Lower?

Result 5

Social welfare declines as the frequency of resale increases.

Table VI presents the p-values for the Brunner-Munzel test,

rates were 1.058 and 1.276 for Data 1 and Data 2, respectively,

resales Data 1 Data 2

comp xy
0 1.243 (n=59) 1.480 (n=58)
1 0.930 (n=13) 1.039 (n=12)
2 —– (n=0) 0.980 (n=2)

p-value p <0.001 p <0.001

incomp xy
0 1.304 (n=74) 1.447 (n=62)
1 0.926 (n=14) 1.043 (n=27)
2 0.874 (n=8) 0.980 (n=7)

p-value p <0.001 p <0.001

comp xz
0 1.371 (n=44) 1.478 (n=53)
1 0.909 (n=12) 1.025 (n=3)
2 0.874 (n=4) 0.980 (n=4)

p-value p <0.001 p <0.001

incompxz
0 1.371 (n=40) 1.382 (n=38)
1 0.926 (n=7) 1.009 (n=8)
2 0.874 (n=1) 0.980 (n=2)

p-value p <0.001 p <0.001

TABLE VII: Averages transformed efficiency rates and p-values of
the Kruskal-Wallis test.
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5. Final Remarks: Main Results

The prices of data and the constituent variables fluctuated over
rounds. Resale occasionally happens.

The prices of data determined by the initial owners under budget
constraints remained relatively stable without a drastic increase
compared with the prices of those data determined under no budget
constraints, although the budget constraints were so loose that it
would not be actually a constraint at all for rational traders. the
budget constraints.

The efficiency rates in transactions made under budget constraints
were not lower than those rates in transactions made under no budget
constraints.
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5. Final Remarks: For Future Research

Conducting additional treatment.

more realistic budget constraints

Extension to a more general model.

We need to introduce asymmetric gross profits in to our model.

How to prevent from selling false contents intentionally.
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Appendix 1: The Basic Model w/o Production and Budget

N = {1, 2, . . . , n}: the finite set of players, where player 1 is an initial
owner of information, and players 2, ..., and n are its demanders.

W (m) (L(m)): the gross profits to each informed (uninformed)
player, when the information is shared by m players;

W (1) ≥W (2) ≥ . . . ,≥W (n) > L(0) ≥ L(1) ≥ . . . ,≥ L(n − 1) ≥ 0.

ref. Cournot Nash equilibrium profits are summarized in the following order:

W (1) > · · · > W (n) > L(0) > · · · > L(K) = · · · = L(n − 1) = 0.

the initial state [{1}; x0], where x0 = (x0i )i∈N is a vector of payoffs
given by

x0i =

{
W (1) for i = 1;

L(1) for any i 6= 1
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When the information is traded within a group of players {1} ∪ S , where
S ⊆ N \ {1}, denote by pi the amount of money that player i gains from
or pays to members of {1} ∪ S and s = |S |. Let y = (yi∈{1}∪S) be a
vector of payoffs in {1} ∪ S , where

yi = W (1 + s) + pi .

We say that a vector y of payoffs is an {1} ∪ S-imputation at the initial
state [{1}; x0] if the following conditions are satisfied;∑

i∈{1}∪S pi = 0 i.e.,
∑

i∈{1}∪S yi = (1 + s)W (1 + s)

(balancedness in {1} ∪ S)

and

yi ≥ x0i for any i ∈ {1} ∪ S (individual rationality of i ∈ {1} ∪ S).
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Sps: members in {1} ∪ S reach a particular {1} ∪ S-imputation y∗ in
negotiations and they share the information as a result.

a new state [{1} ∪ S ; x1]: {1} ∪ S is the set of informed players and
x1 = (x1i )i∈N is the vector of payoffs given by

x1i =

{
y∗i = W (1 + s) + p∗i for any i ∈ {1} ∪ S ;

L(1 + s) for any i /∈ {1} ∪ S .

If {1} ∪ S = N, then trading is over. Otherwise, resale by a member of
{1} ∪ S may occur.
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At the state [{1} ∪ S ; x1], a group of players Q consisting of both
informed and uninformed players, i.e., Q ∩ ({1} ∪ S) 6= ∅ and
Q ∩ (N \ ({1} ∪ S)) 6= ∅, starts negotiations on resale.

T = Q ∩ ({1} ∪ S): the set of informed players in Q
R = Q ∩ (N \ ({1} ∪ S)): the set of uninformed players in Q.

Let y = (yi )i∈Q be a payoff vector in Q which is given by

yi =

{
W (1 + s + r) + p∗i + qi for any i ∈ T ;

W (1 + s + r) + qi for any i ∈ R,

where s = |S |, r = |R|, and qi is the amount of money that player i gains
from or pays to members of Q.

We say a payoff vector y is a Q-imputation at the state [{1} ∪ S ; x1], if it
satisfies the balancedness in Q and individual rationality of i ∈ Q;∑

i∈Q
qi = 0 and yi ≥ x1i for any i ∈ Q.
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Sps: members in Q agree upon a particular Q-imputation y∗, and they
share the information.

another state [{1} ∪ S ∪ R; x2], where x2 = (x2i )i∈N is the payoff vector
given by

x2i =


y∗i = W (1 + s + r) + p∗i + q∗i for any i ∈ T ;

y∗i = W (1 + s + r) + q∗i for any i ∈ R;

W (1 + s + r) + p∗i for any i ∈ ({1} ∪ S) \ T ;

L(1 + s + r) for any i ∈ (N \ ({1} ∪ S)) \ R.

1 If members in Q can not agree upon a particular Q-imputation y∗,
then resale process stops and the state [{1} ∪ S ; x1] is the outcome of
this sequential trades.

2 If Q = N and members in Q agree upon some Q-imputation y∗, then
trading is over.

3 Otherwise, resale process may continue.
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Appendix 2: Solution Concept

A state [M; x ], where M = {1} ∪ S , is stable if for any objection of an
arbitrary player i ∈ Q against another player j ∈ Q \ {i} in x , there
exists a counter objection of j against i .

Namely, a variant of (Aumann-Maschler) bargaining set.

Our solution concept is as follows;

A state [M, x ] is stationary, if no group Q ∈ 4(M) has a stable
Q-imputation at [M, x ], where

4(M) = {Q ⊆ N : Q ∩M 6= ∅ and Q ∩ (N \M) 6= ∅}.

We define our solution concept considering the resale process backwardly.
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Formal Definitions:

Suppose that all players have obtained player 1’s information.
Let x = (xi )i∈N be a payoff vector, where xi = W (n) + pi and pi
denotes the net amount of money that player i has gained or paid up
to that time. A payoff vector x is balanced in N if∑

i∈N
pi = 0.

If all players obtained the information and an associated payoff vector
is balanced, this state will last.

Thus, we say that the state [N; x ] is stationary for each balanced
payoff vector x associated with N.
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Denote a state by [M; x ], where M is a set of informed players, and x
is a vector of payoffs given by

xi =

{
W (m) + pi for any i ∈ M;

L(m) for any i ∈ N \M,
(2)

which meets the balancedness in M:∑
i∈M pi = 0, or

∑
i∈M xi = mW (m).

Here, pi is the net amount of money that i gained or paid before the
state is reached.
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Let 4(M) = {Q ⊆ N : Q ∩M 6= ∅ and Q ∩ (N \M) 6= ∅}. For each
Q ∈ 4(M), let

QM = Q ∩M and Q−M = Q ∩ (N \M),

and let yQ be a vector of payoffs in Q given by

yi =

{
W (m + q−M) + pi + pQi for any i ∈ QM ;

W (m + q−M) + pQi for any i ∈ Q−M ,

where q−M = |Q−M | and pQi is the amount of money that i gains from or
pays to the members in Q.

We say that a vector of payoffs yQ is a Q-imputation at [M, x ] if∑
i∈Q pQi = 0 and yQi ≥ xi for any i ∈ Q.
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For each Q ∈ 4(M), if all members of Q agree upon a Q-imputation yQ

and resale is carried out, then the information is shared by members of
M ∪ Q−M and a new vector of payoffs z = (zi )i∈N is given by

zi =


W (m + q−m) + pi + pQi for any i ∈ QM ;

W (m + q−m) + pQi for any i ∈ Q−M ;

W (m + q−m) + pi for any i ∈ M \ QM ;

L(m + q−m) for any i ∈ (N \M) \ QM .

When
∑

i∈M pi = 0 and
∑

i∈Q−M pQi = 0, z is a vector of payoffs that is

balanced in M ∪ Q−M . Thus, we have a new state [M ∪ Q−M , z ].
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For each Q ∈ 4(M), we say that a Q-imputation yQ at [M, x ] is
valid if a new state [M ∪ Q−M , z ] induced by yQ is stationary.

What is stationarity? That will be defined recursively in what follows.

The state [N; x ] is stationary for each balanced payoff vector x
associated with N.
We should consider the resale process backwardly from [N; x ].

Take a valid Q-imputation yQ and take two members i and j of Q
arbitrarily. We say that i has an objection (K , yK ) against j in yQ , if
there exists a set K ∈ 4(M) with i ∈ K and j /∈ K and a valid
K -imputation yQi such that

yKi > yQi ,

yKj ≥y
Q
j for any i ∈ K ∩ (Q \ {i}).
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For this objection, we say that j has a counter objection (L, yL) against i ,
if there exists a set L ∈ 4(M) with i /∈ L and j ∈ L and a valid
L-imputation yL such that

yLi ≥yKi for any i ∈ K ∩ L,

yLj ≥y
Q
j for any j ∈ (L \ K ) ∩ Q.

We say that a valid Q-imputation yQ is stable, if for each i , j ∈ Q (i 6= j)
and each objection of i against j at yQ , there exists a counter objection of
j against i .

A state [M, x ] is stationary, if no group Q ∈ 4(M) has a stable
Q-imputation at [M, x ].
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Appendix 3: Results

We here consider the highest resale prices of the information.

The definition of m(r):

Let m(0) = n.
Then, let m(1) be the largest integer m that satisfies 2 ≤ m ≤ m(0)− 1
and

W (m)>W (n) + (m(0)−m)(W (n)− L(m)). (3)

Further let m(2) be the largest integer that satisfies 2 ≤ m ≤ m(1)− 1 and

W (m)>W (m(1)) + (m(1)−m)(W (m(1))− L(m)),

i.e.,

W (m)− L(m)>(m(1)−m + 1)(W (m(1))− L(m))

Define m(3), ..., in a similar manner.
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In general, m(r) is defined as the largest integer that satisfies
2 ≤ m(r) ≤ m(r − 1)− 1 and

W (m)− L(m)>(m(r − 1)−m + 1)(W (m(r − 1))− L(m)). (4)

Let m(r∗) be the minimum integer of m(r).

For any state [M, x ], where {1} ⊂ M ⊆ N and x is a vector of payoffs
that is balanced in M, if |M| = m(r) for some r = 1, . . . , r∗, then
[M, x ] is stationary; otherwise, not.
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Example:

The gross profits are specified as follows.

W (1) = 200, W (2) = 120, W (3) = 70, W (4) = 50, L(0) = 40,
L(1) = 30, L(2) = 20, L(3) = 10.

First, find the largest integer e such that 2 ≤ e ≤ 3 and

W (e)>W (4) + (4− e)(W (4)− L(e)).

When e = 3, W (3) = 70 and W (4) + (4− 3)(W (4)− L(3)) = 90.
Namely, when there are 3 informed players, each obtains 70 but one
can obtain at most 90 by reselling the information.

When e = 2, W (2) = 120, but W (4) + (4− 2)(W (4)− L(2)) = 110
for j = 1, 2. Namely, when there are 2 informed players, everyone has
no incentive to resell the data.

The solution of the above problem is thus e = 2.
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Second, consider a situation in which there are 2 data holders.

W (2) = 120.

If an informed player resells to an uninformed player, expecting to
receive W (3)− L(2) = 50 from him, another resale should occur, as
shown above. Then, the first reseller would obtained
W (3)− L(2) + W (4) = 50 + 50 = 100.

Even if the first resale was made to 2 uninformed platyers, he could
obtain only 2(W (4)− L(2)) + W (4) = 2 ∗ 30 + 50 = 110.

Resale does not occur when there are 2 informed players.
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Finally, compare the case of e = 2 and e = 1.

W (1) = 200, but the initial holder of information can obtain
W (2) + (2− 1)(W (2)− L(1)) = 210 through monetary transfer by
selling the data to an uninformed player.

Choose e = 2.

We found that the information will be sold to an uninformed player. After
that, Both of 2 informed players will not resell the information to any
uninformed players.
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Proposition

(1) Suppose that W (1) < m(r∗)W (m(r∗)). Then, when m(r∗) = n, then
the information will be eventually shared by all players, i.e., Only the state
[N, xN ] is stationary state, where xN is an arbitrary N-imputation in
[N, x ]. When m(r∗) < n, the information will be shared by m(r∗) players,
i.e., [M, y ] is the stationary state, where |M| = m(r∗) and y which gives
the highest possible payoff for player 1 is as follows;

yi =

{
m(r∗)(W (m(r∗)− L(m(r∗))) for i = 1;

L(m(r∗)) for any i ∈ N \ {1}.

(2) Suppose that W (1) ≥ m(r∗)W (m(r∗)). Then, the information will be
kept by player 1. Namely, the initial state [{1}, x0] is stationary.
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